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SUMMARY 

It is well known that explicit methods are subject to a restriction on the time step. This restriction is a 
drawback if the variation of the solution in time is so small that accuracy considerations would allow a larger 
time step. In this case, implicit methods are more appropriate because they do allow large time steps. 
However, in general, they require more storage and are more difficult to implement than explicit methods. In 
this paper we propose a technique by which it is possible to stabilize explicit methods for quasi-linear 
hyperbolic equations. The stabilization turns out to be so effective that explicit methods become a good 
alternative to unconditionally stable implicit methods. 

1. INTRODUCTION 

In numerical analysis, we distinguish explicit and implicit time integrators for partial differential 
equations. It is well known that explicit methods are subject to a restriction on the time step. This 
restriction is a drawback if the variation in time is so small that accuracy considerations would 
allow a larger time step. In this case, implicit methods are more appropriate because they do allow 
large time steps. However, in general, they require more storage and are more difficult to 
implement than explicit methods. In this paper, we propose a technique by which it is possible to 
stabilize explicit methods for quasi-linear hyperbolic equations. The stabilization turns out to be so 
effective that explicit methods become a good alternative to unconditionally stable implicit 
methods. More precisely, the stabilized explicit methods are competitive with conventional 
implicit methods with respect to both accuracy and computational costs. In fact, we will show, for 
some examples, that the technique also inherently appears in implicit methods, which explains the 
improved stability behaviour of implicit methods. In the fifties, explicit methods were quite popular 
because of their simplicity. Thereby, they were well suited for hand calculations and small 
computers. With the coming of more powerful computers in the sixties, having also a larger 
memory, implicit methods became popular. In the seventies, when the vector computers were 
introduced, the explicit methods became in scope again, because they allow a high degree of 
vectorization. Therefore, the stabilization technique given here may be of interest for the efficient 
use of explicit methods in a large variety of problems. In fact, our attention was focused on explicit 
methods when we started to construct a shallow-water equation solver for use on the vector 
computer CYBER 205. 

In this paper, we restrict ourselves to hyperbolic problems; however the theory develops in a 
similar way for parabolic problems. In Section 2 the theory is presented and in Section 3 some 
numerical illustrations will be given. 
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2. THEORY 

Consider the equation 

U, = f(u,uX,,ux2,. . . , uX,, X, t) ,  XER", t > 0 (1) 

where u = (ul, (x, t), u,(x, t),  . . . , u,(x, t))T, defining a first-order quasi-linear hyperbolic system of N 
equations.' Using explicit methods for (l), the time step is restricted by the Courant-Friedrichs- 
Lewy (C.F.L.) condition (see (25)). In many problems, this time step restriction is much more severe 
than the one following from accuracy considerations. For instance, in order to represent an 
irregular geometry, a fine space mesh is needed. At the same time the variation of the solution in 
time may be very slow. In that case, one likes to use much larger time steps than the one allowed by 
the C.F.L. condition. In the following sections, we will show that it is possible to stabilize an explicit 
method by an appropriate smoothing of the right-hand side. Smoothing of the right-hand side will 
not give rise to larger errors when u, has small space derivatives. We will show for some examples 
that small time derivatives of u imply, under certain conditions, small space derivatives of u,. 
Moreover, this property is trivial for the limiting stationary case. We emphasize that u itself may 
have large space derivatives. For example, we may think of solutions which are close to a steady 
state and which can be written in the form 

u(x, t )  = uo (x) + U' (x, t )  (2) 
where uo(x), the stationary solution, has large space derivatives and u1 (x, t )  is a smooth function in 
both variables x and t .  

For the stabilization of explicit methods, smoothing is often used before, but then usually the 
grid function u is ~ m o o t h e d , ~ . ~  rather than the right-hand side. This smoothing of u may only be 
applied, without danger of loss of accuracy, if u itself is smooth, i.e. if u has small derivatives with 
respect to the space variables, which, in general, is not true. As an example, the famous variant of 
the Lax-Wendroff scheme proposed by Richtmyer and Morton4 may be regarded as a two-stage 
second-order Runge-Kutta m e t h ~ d , ~  where, in the first stage, the solution u is smoothed, in order 
to obtain a stable method. 

In the field of the boundary-value problems the stabilization technique is known by the name 
residual averaging.6 In this case, explicit time stepping is used to solve a boundary-value problem. 
The explicit method is then stabilized by using an implicit smoothing operator (see Section 2.4) in 
order to accelerate the convergence. Our contribution will be the construction of explicit 
smoothing operators which are less expensive than the implicit smoothing operators, especially if 
we want to use a vector computer. 

2.1. The smoothness of the right-hand side 

The assumption of a smooth right-hand side (or, equivalently, of u,) is important for the error 
introduced by smoothing. In hyperbolic equations we may expect in some cases that there is a 
relation between the variation of the solution in time and in space. For example, we may think of 
wave-like phenomena moving with some characteristic speed over the field. We will show for two 
examples that such a relation exists. 

Example 1 .  Consider the one-dimensional system of equations 

a 
ax 

U , = A - U + + U + ~ ( X ) , X E R  (3) 
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where u = (u,(x, t), u,(x, t ) ,  . . . , u,(x, L ) ) ~ ,  A is a non-singular, constant N x N matrix, B a constant 
N x N matrix and g an arbitrary continuous function of x. Differentiating (3) with respect to time 
yields 

(4) 

Using (4) it follows that if all time derivatives of u up to order n are small, then the (n-1)th space 
derivative of u, is small. Hence, the right-hand side in (3) has small space derivatives if u has small 
time derivatives. 

a 
ax (u,), = A - U, + Bu, 

Example 2. As a second example we consider the linearized shallow-water equations given by 

where u = (u, u, OT, h(x, y) is an arbitrary function of x and y, and 

Differentiation of ( 5 )  with respect to t gives 

(u,) ,=- A - + B -  U, ( aaX ,ay) 
Hence u, is also a solution of the linearized shallow-water equations, in this case, without the 
forcing term h(x, y). Let us define by <(x, y), r](x, y) a normalized orthogonal co-ordinate system. 
After transformation (in terms of these co-ordinates) (6) becomes 

Now we assume that the partial derivatives with respect to r]  are negligible and that all the time 
derivatives of u are small. Furthermore, we assume that 

all au, ar]av, 
ax a t  ayag  +-- -_ 

is small. This condition says that the vector ( ( u , ) ~ ,  ( u )  )T is small in the ?-direction, given by the 
vector (qx, ?y)T. Using the special structure of A and B, it follows from the first and second equations 
in (6) that ((JX and (I!J~ are small. Furthermore, from the third equation in (7), it follows that 

! <  

is small. Combining (8a) and (8b), we have that (uJC and ( u , ) ~  are small. As the derivatives with 
respect to q are negligible, it follows that (uJX, (uJY and ( u , ) ~ ,  (vJY are small. Hence, all first-order 
space derivatives of u, are small. Proceeding in the same way, under similar assumptions, it is 
possible to show that all higher-order space derivatives of u, are small. 

These two examples show that, under certain assumptions, we may expect that the right-hand 
side is smooth in space if the time derivatives of the solution are small. The property of a smooth 
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right-hand side in space can be used effectively to stabilize an explicit time integration method by 
smoothing the discretized form off(u, ux,, ux2,. . . , uxn, x, t ) ,  which is obtained by the method of lines. 
In this approach, the space discretization gives rise to a system of ordinary differential equations5 

(9) 
d 
dt 
- U = F(U, t) ,  

where U is a grid function approximating u, and F(., t )  a vector function approximating f(., x, t ) .  
Thereafter, an appropriate time integrator is used to solve this equation. Instead of (9), we propose 
to solve 

d 
dt 
- U = S F ( U ,  t) ,  

where S is a smoothing operator, with the property S + I ,  the identity operator, when the mesh size 
tends to zero. 

In fact, many unconditionally stable time integrators, applied to (9), can be written as a 
conditionally stable (explicit) integrator applied to (10). We will illustrate this for Euler's backward 
method applied to 

4 = m x ,  x )  ( 1  1 )  
m x ,  x )  = UX + g ( x )  

where g ( x )  is an arbitrary function of x .  The right-hand side in (1  1 )  is discretized, on a grid with 
mesh size h, with the usual second-order central differences 

F j ( U )  = ( D u ) j  + g(xj ) ,  x j  =jh  
where 

and U j  approximates u(xj ) .  When backward Euler is applied to (9), with F given by (12), we find 

U Y + l -  A t ( D U ) ; + '  = U;  + A t g ( x j )  

UY' ' - At(DU)Y' ' = U ;  - At(DU)J + AtFj(U")  

UY' ' = Uj. + At  { ( I  - A t D ) -  'F(U")} j 

(14) 

(15) 

(16) 

where U" approximates the exact solution U ( t )  of (9) at t" = nAt.  This can be rewritten as 

As the operator ( I  - AtD)  is invertible, we find 

which is simply forward Euler applied to (10) with the smoothing operator S = ( I  - A t D ) -  '. A 
discussion of this smoothing operator and another example can be found in the Appendix. Here, we 
mention that the time step appears in the smoothing operator. Because the magnitude of the time 
step determines the amount of smoothing needed to obtain a stable method, it will also appear in 
our smoothing operators. Moreover, the time step in the smoothing operator ensures the 
consistency of (10) with (9). 

In the remainder of this section, we will illustrate the theory by the scalar equation ( 1  1 )  and its 
semi-discretization (12). We are aware of the fact that ( 1 1 )  is simple, but it gives relevant 
information for less trivial cases (see Section 3.3). 

2.2. Stability 

In order to solve the initial value problem (9) we consider explicit m-point single step Runge- 
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Kutta formulae, i.e. formulae of the type 
m - 1  

i = O  
U"+l =U" + 1 BiKi 

i -  1 
Ki  = A t F  U" + 1 cti,lKl, t" + piAt ( I = O  

p o = O  

When (17) is applied to the scalar equation 

du 
-=Au 
dt 

we obtain 

u"+' = P,(AtA)u" 

645 

(17) 

where P,(z) is a polynomial of the form 

Pm(z) = p o  + B I Z  + *.. + pmzm (19) 
of which the coefficients pi can be expressed in terms of the Runge-Kutta parameters. The 
polynomial Pm(z) is the so-called stability polynomial associated with formula (1 7). The 
polynomial is compatible with a Runge-Kutta formula of order p ,  provided that 

Furthermore, the region defined by 

S =  (21 IPm(z) I  < 1) (21) 
will be called the stability region of the Runge-Kutta formula and Pm(AA) is called the 
amplification f a ~ t o r . ~  In this paper, scheme (17) is said to be stable when the set of points AtA, where 
1 is an eigenvalue of the Jacobian matrix of (9), belongs to the stability region S .  

For example, if we apply (17) to (9) with the right-hand side (12) and if we assume periodic 
boundary conditions, then the eigenfunctions of the Jacobian matrix are Fourier components, 

Vj = exp(ibjh), bcR (22) 

and the associated eigenvalues are 

sin(bh) 
h 

A=i- 

Thereby, the amplification factor becomes Pm(Ati sin(bh)/h). Furthermore, the method is von 
Neumann stable if the absolute value of this amplification factor is smaller than 

The largest constant C,  such that IPm(iy)I < 1 for YE[ - C,  C ]  and ~ E R ,  is called the imaginary 
stability boundary. For the classical Runge-Kutta method C = 2J2.5 If, in general, an explicit 
method has an imaginary stability boundary C,  then when this method is applied to { (9), (12)) we 
have the von Neumann stability condition 

At < Ch (24) 
When smoothing is applied it is of interest to compare the stability condition with the C.F.L. 
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condition, because the stability condition can never exceed the C.F.L. condition. The C.F.L. 
condition says that the convex hull of the domain of dependence of the exact solution at a point x at 
time t, must be contained in the convex hull of the domain of dependence of the approximating 
solution at the same point in space and time.7 

Lemma 1. Let (1 1) be discretized with central differences involving 1 points to the left and to the 
right. If an explicit Runge-Kutta method with stability polynomial P,(z) is used to solve the 
resulting system of ODES then we have the C.F.L. condition 

At < mlh (25) 

Proof 

It is straightforwardly proved that (25) is the C.F.L. condition for the Runge-Kutta method. 

2.3. Explicit smoothing operators 

2.3.1. Derivation. Consider the smoothing operator S defined by 

( S , F ) j : =  ( F j +  1 + F j -  1)/2 

In order to determine the maximum allowed time step, we now need the eigenvalues of S,D.  These 
are simply the products of the eigenvalues of S ,  and D, because S ,  and D have the same 
eigenfunctions (22). The eigenvalues of S ,  are 

A,, = cos(bh) (27)  
and the products of the eigenvalues of S ,  and D 

ASID = cos(bh)i sin(bh)/h = i sin(2bh)/(2h) (28) 
Hence, compared with (23) the maximum eigenvalues have been reduced by a factor two. However, 
this may still be very restrictive. Therefore, we repeat the smoothing. Defining a second smoothing 
operator by 

( S 2 F ) j : = ( F j + z  + F j - , ) / 2  

we have, along the same line, that again a factor two is won. In general, we apply the smoothing 
operator 

where 

The maximum eigenvalue is now reduced by a factor 2”. This means that the time step can be 
increased exponentially, whereas the costs grow linearly. Hence, as 2” time steps are more 
expensive than one time step with n smoothings, smoothing makes the method much more 
efficient. 

The reader may have noticed that in the case g = 0 the smoothing degenerates to a discretization 
on a coarser grid. This appears quite natural, because of the following reasoning. The solution is of 
the form 

u(x, t) = r(x + t) (32)  
where r is a function depending on the initial and boundary conditions. If in this case the time 
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derivatives are small, then also the space derivatives are small. Hence, if for accuracy reasons the 
time step may be increased then also the mesh size may be increased. If, however, g is non-zero the 
discretization differs essentially from the one on a coarser grid. For example, a function g ( j h )  = 
( -  1)' cannot be approximated on a coarser grid. 

We now will define the smoothing operator more generally by 

where 
(33) 

(34) 
Notice that the smoothing operator in (34) appears to be an identity operator plus a discretized 
form of a diffusion operator. For p k  = 3 for all k and k ,  = 1 we have again (30). Another, special 
smoothing operator following from (33) is the case where p k  = for all k and k ,  = 2. The eigenvalue 
of (34) for this value of p k  is 

Ask = ~ 0 ~ ~ ( 2 ~ - ~ b h )  (35) 
Now, when (33) is applied to (12), again the corresponding eigenvalues may be multiplied and we 
find 

(36) 
fl  

AsD = i n ~os(2~-~bh)sin(2"-'bh)/(2"-'h) 

Icos(x)sin(2x)l= 12(1 - sinz(x))sin(x)l < $J3 

k = 2  

In order to approximate the modulus of the maximum eigenvalue we need the inequality 

(37) 
Isolating co~(2"-~bh)  from the product sequence (36) and combining it with sin(T-'bh), we can 
apply inequality (37) to find an upper bound for the maximum modulus of (36). This gives 

11sD1 <$J3/(2"- 'h) z 0'77/(2"-lh) (38) 
In Reference 8 it is shown that (30), (31) defines an optimal smoothing operator for the considered 
equation. However, for initial-boundary value problems we found that this operator gave unstable 
results, whereas the operator (34) with k ,  = 2 and p k  slightly smaller than gave stable results (see 
Section 3.3). This is possibly due to the fact that in the latter case (33) has positive eigenvalues. 

With respect to the C.F.L. condition (25) we remark that an application of (33) gives rise to a 
differencing in which 1 = 1 + C:=ko2k-1 = 2" - 2ko-1 + 1. In the case without smoothing 1 = 1. 
Application of Lemma 1 in both cases shows that with the resulting method after smoothing an 
increase of the time step with a factor 2" - 2ko- + 1 is possible. This factor is obtained for k ,  = 1 
and almost obtained for k ,  = 2, as can be seen from the reduction of the magnitude of the spectral 
radius of the Jacobian matrix. 

2.3.2. The smoothing error. Here we will give an approximation of the error due to the 
smoothing operation (33), for p k  independent of k .  This is achieved by comparing the smoothed and 
non-smoothed right-hand sides. We will see that the smoothness of the original right-hand side and 
the time step determine the magnitude of the error. If, in the following, the subscript h is used in 
connection with a continuous function, then this denotes the restriction of that function to the grid. 

Lemma 2. Let A ( t h )  be a discretization of a(<(x), <,(x), x). If A(<,,) and <h satisfy the condition 

(39) 

(40) 

Aj(<h)  = a(<(xj), <x(Xj), Xj) + Cjh2 -t O(h4) 

Cj,, = C j  f Djh + O(h2)  
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and, moreover, a(t(x) ,  t,(x),x)eC4, then the error due to the smoothing operator (33) is, with 
pk = p? 

(41) 
2211 - 22ko- 2 a 2  

a x 2  
p a ( t ( x j ) ,  tx(xj) ,xj)  + O(h4) ( S A ( t h ) ) j  - A j ( r h )  = ph2 3 

Proof 

Let $(x)  = a(t(x) ,  tx(x), x). Using Taylor expansions, we find by substitution of $(x)  into (34) 

Hence, we have the following error due to the smoothing (33) for 4(x j ) :  

a 2  

3 a x 2  

( S A ( t h ) ) j  - A j ( t h )  = ( S a h ) j  - a(t(xj) ,  t x ( X j ) ,  X j )  -I- h’((sC)j - Cj) + O(h4) 

22” - 22ko - 2 

-4(xj)  + O(h4) = ph2 

With (39) it follows that 

(44) 

It follows from (40) that (SC)j  - C j  is of O(h2). Furthermore, by assumption 4 ( x )  = a( t (x ) ,  tX (x ) ,  x) ,  
hence, the lemma follows by substitution of (43) into (44). 

Corrollary. The error due to the smoothing operator (2.33) is of O(h2).  

Theorem 1 .  Let the conditions of Lemma 2 be satisfied. Let F be defined by (12). Let C be the 
imaginary stability boundary of an explicit method (see (24)). Then the error due to the smoothing 
operator (33) is, when the maximum allowed time step is used, for the special case p k  = 4, k, = 1, 

and for the special case p k  = t, k, = 2 

Proof 

First we prove (45). Denote by At, the maximum time step without smoothing. Hence, from (24) 
At,/h = C. In Section 2.3.1 we have found that the time step can be increased by a factor 2”. This 
gives (AtIAt,) = 2”. Substituting this into (41) and setting t ( x )  = u(x, t )  for some time t ,  we arrive at 
(45). The proof of (46) follows the same line, except that from (38), the time step can now be 
increased by a factor 2432”-’. 

2.4. An implicit smoothing operator 

Another smoothing operator, we want to introduce, is an implicit one. This smoothing 
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operator is implicitly defined by 

- p(SF)j+ 1 + (1 + 2p)(SF)j - p(SF)j- 1 = Fj 

As = 1/[1 + 4p sin2(bh/2)] 

(47) 

(48) 

(49) 

For the eigenfunctions (22), the eigenvalues of this system are 

The reduction factor is found by the multiplication of the eigenvalues of S and D, giving 

AsD = i sin(bh)/{h[l+ 4psin2(bh/2)]} 

= 2i sin(bh/2)cos(bh/2)/{h[ 1 + 4p sinz(bh/2)]} 

Omiting cos(bh/2), which is less than one, and writing x = sin(bh/2) we find 

IJSDl  < 2x/[h(1 + 4px2)], 0 < x < 1. 

By differentiation with respect to x we find a maximum of the right-hand side for 

x = 1/44p) ,  p >a, 
x = l ,  O < p < < .  

maxI&,I < 1/(2hJP) (52) 

Substitution in (50) gives 

Hence, increasing p by a factor of four will decrease the maximal eigenvalue by a factor of two. 
Notice that from the stability condition (24) and from (52) it follows that 

p 2 aAtZ/(C2h2) (53) 
If p satisfies this condition, then we have constructed an unconditionally stable method. Compared 
to the usual implicit time integrators, this method is simpler to implement. Especially if the right- 
hand side (see (1)) becomes non-linear and complicated. 

Theorem 2. Let the conditions of Lemma 2 (see Section 2.3.2) be satisfies. Let F be given by (12). 
Let C be the imaginary stability boundary of an explicit method (see (24)). Assume periodic 
boundary conditions and equality in (53). Then the error due to the implicit smoothing operator 
(47) is given by 

Proof 

From (47) we obtain 

(S-’F)j= -pFj+, +(1 + ~ P ) F , - ~ F ~ - ~  ( 5 5 )  

Using Gerschgorin’s t h e ~ r e m , ~  we have that the minimum eigenvalue of S - ’  is greater than or 
equal to 1. Hence the spectral radius of S is smaller than or equal to 1 and thereby S is bounded in 
any matrix norm. Let S’ be defined by 

(S’F)j=pFj+I +(1-2p)Fj+pFj- l  (56) 
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then for a test function +(x)eC2  we have 

From (39), (56) and (57) it follows that 

From (58) and equality in (53), we obtain (54). 

2.5. Systems 

In the case of systems, the same smoothing operators can be used again. This proceeds as follows. 
First the terms on the right-hand side which play an important role with respect to stability have to 
be determined. These terms contain, in general, a derivative in one of the space directions. Then the 
right-hand side of the equation containing such a term has to be smoothed in the same direction as 
that of the derivative. If this equation contains important derivatives with respect to stability in 
more directions, then this equation is successively smoothed in all these directions. We will clarify 
this by an example. 

Example 3. The shallow-water equations can be written in the form 

where g, v and C ,  are positive constants. These equations are again discretized by standard central 
differences (13). In many applications it suffices to consider for stability a reduced Jacobian of the 
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space discretized form of (59), i.e. 

0 gD, 
J ,=  -[ : 

0 g:y]  AD, A D ,  
where D, and D, are the discretizations of a/ax and a/dy, respectively, and is a constant 
approximating H(x, y, t). Ifthis Jacobian is applied to a Fourier component exp[i(b,x + b,y)], then 
we obtain the eigenvalues 0, f J[gR(A: + A:)], where A, and I, are the eigenvalues of D, and D ,  
for the Fourier component, respectively. According to this outcome, it seems appropriate to 
smooth the right-hand sides of the successive equations in the x-, y- and x,y-directions, 
respectively. Using the same one-dimensional smoothing operators as in the previous sections, the 
third right-hand side has to be smoothed in x- and y-directions, successively. After smoothing, the 
Jacobian matrix becomes 

0 9SXD.x 
0 SSYDY (61) 

where S ,  and S,  denote the smoothing operators in the x- and y-directions, respectively. The 
eigenvalues of the Jacobian after smoothing are 0, f J{gA[Isy(IsxI,)2 + Isx(AsyAy)21}, where Asx 
snd ,Isy denote the eigenvalues of S ,  and S,, respectively. Hence, as long as the neglected terms in 
(59) do not become important with respect to stability, it is possible to reduce the modulus of the 
maximum eigenvalue to any desired magnitude. 

I [" ~ S y S , D ,  fiS,S,D, 0 
jr= - 

3. NUMERICAL ILLUSTRATIONS 

To illustrate the foregoing theory, we will give examples of the stabilization for linear and non- 
linear problems. Furthermore, an application to the shallow-water equations will be shown. 

3.1. A linear problem 

The linear problem is defined by 

U, = U, - 16n/L COS(~~TCX/L) ,  0 < t < T ,  0 < x < L 

u(x, 0) = 0.5 sin(2nx/L) + 0.5 sin(32nxlL) 
u(0, t )  = u(L, t )  

where L = 100. The exact solution of this problem is 

u(x, t )  = 0 5  sin(2n(x + t)/L) + 0 5  sin(32nx/L) (63) 
Hence, the solution consists of a non-stationary part, which is slowly varying both in the time and 
in the space variable, and a stationary part which varies rapidly in the space variable only. 

Therefore, the numerical approximation of the stationary part needs a finer space mesh than the 
non-stationary part. This fine space mesh does, when no smoothing is used, severely restrict the 
time step. Here, we will give the accuracy results for five methods which all have the same semi- 
discretization (12). The basic time integrator we use is the classical fourth order Runge-Kutta 
m e t h ~ d . ~  This method, which is used by various others,6*'0*" IS . conditionally stable for hyperbolic 
partial differential equations. The imaginary stability boundary of this method is C = 242.  The 
methods are: 
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Table I. Numerical results using smoothing operators with T = 2.8 x 128, h = L/N 

Correct digits, Correct digits 
on coarser grids 

At RK4 RK4E 1 RK4E2 RK4I CN RK4 N 
N = 384 

0.7 2.0 
1.4 
1.866 
2.8 
3.733 
5.6 
7.466 

11.2 
14.933 

2.0(0) 2.0(0) 2.0(0) 1.9 
2.1(1) 2.0( 1) 1.7 

1 '9( 2) 1.7( 1) 1.4 

1 '4( 3) 1.3( 1) 0.9 

2.0( 1) 

1.7(2) 

1.2(3) 

0.6(4) 
0.8(4) 0.7( 1) 0.4 - 

2.0 384 
1.6 192 

0.9 96 

0.3 48 

0.1 24 

RK4 
RK4E1 the classical Runge-Kutta method with smoothing operator (33), where pk = 3 and 

RK4E2 the classical Runge-Kutta method with smoothing operator (33), where pk = 

the classical Runge-Kutta method without smoothing 

k ,  = 1, = [l + log2(At/(2J2h))] 

and k ,  = 2, n = [2 + log2(At/(2,/2h))] for 1 < At/(2,/2h) < $ and n = [2 + log, 
($J3At/(2J2h))] for Atl(2J2h) > 3 
the classical Runge-Kutta method with the implicit smoothing operator (47), where 
,u = tAt2/(2 J2h), for At/(2 J2h) > 1, and 

RK41 

CN the Crank-Nicolson method. 

The brackets, [ 3, in the expressions for the determination of n denote the entier function. 
Furthermore, no smoothing is performed for Atl(2J2h) < 1 in RK4E1, RK4E2 and RK4I. In 
Table I we give the number of correct digits produced by these integration methods, i.e. the 
- log,,( lmaximum error[), and in parentheses the number of smoothings. 

The main part of the table presents the results on a grid with 384 grid points. For reference, we 
also added results of the RK4 method on coarser grids using the corresponding maximum allowed 
time steps. These time steps are given in the first column. The hyphens in the column of RK4 denote 
that the method is unstable for the corresponding time step. The results of RK4E1 and RK4E2 are 
given for time steps At which are the maximum allowed for the corresponding number of 
smoothings. For RK4E1, this results in a doubling of the allowed time step, each time a new 
operator is applied. If in RK4E2 the first operator of the product sequence is applied, a factor $ 4 3  
is gained (see (36) and (38)). Thereafter, as with RK4E1, a factor two is gained each time a new 
smoothing operator of the sequence is applied. RK4I and CN were applied using the same step 
sizes as RK4E1. Because II is an integer, the increase of the maximum allowed time step proceeds in 
a discreet way. However, for accuracy reasons it may be desirable to have a smooth increase of the 
time step as the right-hand side is smoothed more and more. Without going into details, we 
mention that this can be established by varying the coefficient pk of the last smoothing operator in 
the product sequence (34). 

The results on the fine grid ( N  = 384) develop in the same way for all methods when the time step 
increases: at first, the number of correct digits changes slightly; then, when the time step becomes 
larger than about 3.5, the number of correct digits decreases rapidly. This can be understood by the 
following reasoning. The error due to the stationary part of the solution is independent of the time 
step. For this problem, this error is rather large because of the large space derivatives of the 
stationary part of the solution. Of course, the error due to the non-stationary part is dependent on 
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the time step. Hence, for a certain time step the error due to the non-stationary part becomes larger 
than that due to the stationary part of the solution. This time step is about 3 5  for this problem. 

The results on coarser grids clearly show the need for a calculation on the fine grid, because the 
number of correct digits rapidly decreases on coarser grids. This error is due to the stationary part 
of the solution. 

3.2. A non-linear problem 

given by 
In this section, we will use the stabilization technique for a non-linear equation. The problem is 

(64) 
where L = 100. The forcing function g is chosen such that we have a solution consisting of a part 
which is slowly varying in both the time and the space variables, and a part which varies relatively 
rapidly in the space variable only. The solution is given by 

(65) 

u, = UU, + g(x, t), 0 < t < T,  0 < x < L 

u(x, t )  = 0.5 sin(2n(x + t)/L) + 0.5 sin(8nxlL) 

Hence, the function g follows to be 

g(x, t )  = 2n/L{0.5 cos(2n(x + t)/L) - C0.5 sin(2n(x + t)/L) + 0.5 sin(8nx/L)] 
x C0.5 C O S ( ~ ~ ( X  + t)/L) + 2 C O S ( ~ ~ X / L ) ] }  (66) 

The initial condition is taken from the exact solution (65). 
We discretized the non-linear term uu, by 

Owing to the non-linear nature of equation (3), almost any time integration will become unstable 
after a certain time period. In our experiments, this discretization (67) performed quite well. For 
more details on discretizations for non-linear problems we refer to References 12-1 5. For the time 
discretization, we applied the same time integrators as in Section 3.1, except for the CN method. 
This method is modified to 

u;+’ = ~ j ” + $ A t [ ( ( ~ ; + 1  +2uj”+Uy-1)/4)(~,”=: -~y?:)/(2k)] 
+$At[((u;+’: +2u;+’+~y?;) /4)(~y+1 -uj”-1)/(2h)l 
+ Atg(xj, t + At/2) (68) 

This modification is linearly implicit and still second order in time. In the following this method is 
called MCN. Table I1 gives the results in the same form as in Table I 

Globally, we observe the same effect for the explicit methods as in the previous section: at first the 
error of the time stepping is negligible with respect to that of the space discretization; then, when 
the time step becomes larger than about 5, the error due to the time stepping becomes significant. 
Furthermore, we find that the application of the smoothing operators gives at first a slight increase 
of the number of correct digits. This is possibly due to an annihilation of errors. The MCN method 
performs relatively poorly for this problem, which is caused by the larger error constants of its 
time discretization. 

The implicit smoothing operator is of course more expensive than one explicit smoothing 
operator of the product sequence. However, as the time step increases, we need more and more 
applications of the explicit smoothing operators, whereas the implicit smoothing operator needs to 
be applied only once. Hence, after a certain number of applications of explicit smoothing operators, 
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Table 11. Numerical results using smoothing operators with 7' = 128 x 8, h = L/N 

Correct digits, Correct digits 
on coarser grids 

At RK4 RK4E1 RK4E2 RK4I MCN RK4 N 
N = 384 

0.8 
1.6 
2.1 
3.2 
4.2 
6.4 
8.4 

12.8 
16.8 

2.0 2.0(0) 2.0(0) 2.0(0) 1.8 2.0 384 
2.6( 1) 2.4( 1) 1.2 1.4 192 

2.3(2) 2.1(1) 0.2 1 .o 96 

1.8( 3) 1.6( 1) 0.6 48 

1.3(4) 0.9( 1) 0.0 24 

2 W )  

2.1(2) 

1.6(3) 

1.3(4) 

explicit smoothing becomes more expensive than implicit smoothing. On a vector computer this 
number is of course much larger, because the explicit smoothing operators vectorize very well, 
which is not the case for the implicit smoothing operator. 

3.3. The shallow-water equations 

In this section, we give results of a computation with the shallow-water equations where 
smoothing is used. These computations are performed on the CYBER 205. On such a vector 
computer, explicit methods are to be preferred, because they allow a high degree of vectorization. 
The application of the smoothing operators is such as described in Section 2.5. In this computation, 
the operator (34) is applied with coefficients depending on k and n, i.e. 

p k = z (  1 1 - 2 - ( n + l - k ) )  (69) 

For this choice the eigenvalues of (38) are positive, which appeared important for initial-boundary 
value problems in order to have a stable integration. With this choice, we found in experiments, 
that the factor 0.77 in (38) can be replaced by 1. In this computation again the classical Runge- 
Kutta method is used. For further details we refer to Reference 8. These results will show the 
relevance of smoothing for flow computations. 

The test problem is a square basin, which has sides of length 5 km (see Figure 1). In the middle of 
the basin is a bump. 

X 

0 -  5 km 
X I I - 

0 km 5 k m  

z l A  ..-. .::. ..'. ' 
:.. . . . . . .  ........ ......... . . . . .  . .  

1 
Y 

5 km 

Figure I .  Geometry of a square basin with bump. 
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The bottom profile h(x,y) is given by 

40 - 30 cos(nr/2)m for r < 1 

where 
r = J [ ( X  - 2.5 x lo3)' + ( y  - 2 3  x 103)2]/1000 

At the left and right boundaries, the elevation [ is prescribed 

[(O, y ,  t )  = - sin(ot), 
C(5.0 x lo3, y ,  t )  = - sin(ot - 4), 

where 0 -= y < 5.0 x lo3 m and 

o = 2 ~ / ( 1 2  x 3600)s-' 
4 = 21~5/600 

655 

(70) 

At the upper and lower boundaries, at y = 0 and y = 5.0 x lo3 m, respectively, the normal velocity 
component u is zero. Furthermore, the constants in equation (59) are chosen to be 

v =  10m2/s, C,=4 x 

We integrated 15 hours physically with various time steps (see Table 111). The calculations were 
performed on a 24 x 24 grid. At the end of each integration the solution was compared with a 
reference solution computed on a finer grid (96 x 96). The results are given in significant digits of 
the u-component. In this case, a root-mean-square error is used, defined by 

where 

in which the summation is over all grid points. The results are given in Table 111. 
In this table, the number in parentheses denotes the number of applied smoothing operators. In 

the first column again the time step is given; it increases downwards with a factor two. In the second 
column the computation times are given and in the last column the numbers of significant digits are 
given with, in parentheses, the number of smoothings. The time step At = 8 is the maximum time 
step without smoothing. The general picture is comparable with the previous cases. At first, the 
number of significant digits remains constant as the time step increases and then, when the time 
step becomes greater than 32 s, the error due to the time step becomes dominant. 

The computation times show a significant reduction when smoothing is used. Furthermore, they 

Table 111. Significant digits for the 
shallow-water equations 

RK4E2 
At Computation time Sd, 

~ ~ ~ 

8 45 2.1(0) 
16 26 2.1(1) 
32 15 2.1(2) 
64 9 1.6(3) 
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contain information about the overhead of the smoothing, because without smoothing the 
computation time should decrease by a factor two downwards. The overhead of one smoothing is 
in this case about of one right-hand side evaluation. 

4. CONCLUSIONS 

In Section 2, we have set up the theory for the stabilization of explicit methods for purely initial- 
value problems. For some numerical examples it was shown that the predicted reduction of the 
spectral radius is correct, even in non-linear partial differential equations. Furthermore, a 
significant decrease of the computation time was found (see Table 111). 

Our experiences are that the described stabilization is easy to implement. In fact, by its 
simplicity, it can be added easily to an existing program. Moreover, we think that the technique can 
be applied to a large variety of problems, even to problems with non-smooth solutions.6 

APPENDIX: SMOOTHING OPERATORS OCCURRING IN OTHER TIME 
INTEGRATORS 

In Section 2.1 we have rewritten the implicit backward Euler integrator to an explicit method in 
which a smoothing operator occurs. We will now show that the backward Euler method also can 
be considered, for problem {(9), (12)}, as a two-stage first-order Runge-Kutta scheme where an 
implicit smoother of the form described in Section 2.5 occurs. Furthermore, applying the well- 
known Crank-Nicolson method to problem { (9), (12)}, this method appears to be a second-order 
two-stage Runge-Kutta scheme, where the same implicit smoothing operator occurs. We rewrite 
(16) as 

(74) 
The term (I-At2D2)-l is an implicit smoothing operator similar to the one described in 
Section 2.5. Furthermore, if this implicit smoothing operator is omitted from (74), then there 
remains a two-stage first-order Runge-Kutta scheme, applied to the linear problem { (9), (12)). 
Proceeding in the same way for an application of Crank-Nicolson to 5{(9), (12)) we have 

(75) 
Here, again the implicit smoothing operator occurs. Omitting this operator, a two-stage second- 
order Runge-Kutta method, applied to { (9), (12)) remains. However, this scheme, without 
smoothing operator, is unstable for hyperbolic problems. Hence, by smoothing it is possible to 
stabilize a method that otherwise would be unstable for all At. 

U'j" = U'j + At{(Z - AtZDZ)-'(I + AtD)F(U")}j 

U'j" = Uy + At{ ( I  - AtZD2/4)-'(I + AtD/2)F(U")}j 
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